Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(6): 5683-5691, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816701

RESUMO

The strategy of material modification for improving the stability of silicon electrodes is laborious and costly, while the conventional binders cannot withstand the repeated massive volume variability of silicon-based materials. Hence, there is a demand to settle the silicon-based materials' problems with green and straightforward solutions. This paper presents a high-performance silicon anode with a binder obtained by in situ thermal cross-linking of citric acid (CA) and ß-cyclodextrin (ß-CD) during the electrode preparation process. The Si electrode with a binder synthesized by the one-pot method shows excellent cycling performance. It maintains a specific capacity of 1696 mAh·g-1 after 200 cycles at a high current of 0.5 C. Furthermore, the carbonylation of ß-CD to carbonyl-ß-CD (c-ß-CD) introduced better water solubility, and the c-ß-CD can generate multidimensional connections with CA and Si, which significantly enhances the specific capacity to 1941 mAh·g-1 at 0.5 C. The results demonstrate that the prepared integrated electrode facilitates the formation of a stable and controllable solid electrolyte interface layer of Si and accommodates Si's repeated giant volume variations.

2.
RSC Adv ; 12(10): 5997-6006, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424555

RESUMO

As a non-active material component, the binder can effectively maintain the integrity of battery electrodes. In this work, based on the inspired structure of fishing nets, a three-dimensional mesh adhesive using widely sourced raw materials CMC and ß-CD was designed. These cross-linked cyclodextrins have the advantage of dispersing the stress at the anchor point and moderating the significant volume changes of the Si anode. The Si/ß-CD-CMC electrode maintains a reversible capacity of 1702 mA h g-1 even after 200 cycles at a high current of 0.5C. This work represents a significant step forward in Si anode binders and enables the cross-linked cyclodextrins to have potential applications in energy storage systems.

3.
Chemistry ; 28(39): e202200310, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482818

RESUMO

Artificial light-driven splitting of water into hydrogen involves multiple links to emulate natural photosynthesis, including light absorption, electron or energy transfer, surface catalysis et al., in which, the mass transportation of sacrificial reagent and reactant is always ignored. Metal-organic cage (MOC) of Pd6 Ru8 (MOC-16), assembling multiple photosensitive Ru and catalytic Pd concomitant with directional electron transfer between them, provides an opportunity to explore the environmental effects from the view point of mass transportation without disturbance of other links. Zr-MOF of UiO-66 is used as a matrix to heterogenize MOC-16 and a series of characterizations are carried out to unravel the composition, structure and optical properties. The intact MOC-16 remains with long-term photo-stability and the outstanding photocatalytic activity is obtained by virtue of a long-lived triplet state. Three matrixes of ZIF-8, ZIF-8 derived carbonate CZIF, and UiO-66 are intercompared for mass transfer based on wettability and porous structure. Water molecule directly takes part in the formation of H2 catalyzed by MOC-16@UiO-66, evidenced by a kinetic isotope effect, in addition to the proton delivery thanks to the hydrophilic nature of UiO-66. The porous structure of UiO-66 is essential for the permeation of sacrificial reagent to serve as two-electron donor, in sharp contrast as one-electron donor in nonporous CZIF matrix. These results highlight the importance of microenviroment surrounding molecular catalysts in view of the heterogenization of molecular catalysts, meanwhile, providing a prominent guidance on how to choose 3D support to bridge the homogenous and heterogenous system.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(2): 465-71, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-24822422

RESUMO

Tree crown projection area and crown volume are the important parameters for the estimation of biomass, tridimensional green biomass and other forestry science applications. Using conventional measurements of tree crown projection area and crown volume will produce a large area of errors in the view of practical situations referring to complicated tree crown structures or different morphological characteristics. However, it is difficult to measure and validate their accuracy through conventional measurement methods. In view of practical problems which include complicated tree crown structure, different morphological characteristics, so as to implement the objective that tree crown projection and crown volume can be extracted by computer program automatically. This paper proposes an automatic untouched measurement based on terrestrial three-dimensional laser scanner named FARO Photon120 using plane scattered data point convex hull algorithm and slice segmentation and accumulation algorithm to calculate the tree crown projection area. It is exploited on VC+6.0 and Matlab7.0. The experiments are exploited on 22 common tree species of Beijing, China. The results show that the correlation coefficient of the crown projection between Av calculated by new method and conventional method A4 reaches 0.964 (p<0.01); and the correlation coefficient of tree crown volume between V(VC) derived from new method and V(C) by the formula of a regular body is 0.960 (p<0.001). The results also show that the average of V(C) is smaller than that of V(VC) at the rate of 8.03%, and the average of A4 is larger than that of A(V) at the rate of 25.5%. Assumed Av and V(VC) as ture values, the deviations of the new method could be attributed to irregularity of the crowns' silhouettes. Different morphological characteristics of tree crown led to measurement error in forest simple plot survey. Based on the results, the paper proposes that: (1) the use of eight-point or sixteen-point projection with fixed angles to estimate crown projections, and (2) different regular volume formula to simulate crown volume according to the tree crown shapes. Based on the high-resolution 3D LIDAR point cloud data of individual tree, tree crown structure was reconstructed at a high rate of speed with high accuracy, and crown projection and volume of individual tree were extracted by this automatical untouched method, which can provide a reference for tree crown structure studies and be worth to popularize in the field of precision forestry.


Assuntos
Algoritmos , Árvores/crescimento & desenvolvimento , Biomassa , China , Agricultura Florestal/métodos , Lasers , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...